LESSONS FOR THE AFGHANISTAN COUNTERINSURGENCY CAMPAIGN

Report prepared for:
The National Counterterrorism Center’s Terrorist Incidents Conference

Prepared by:
Christine Abizaid, Molly Elgin, Sarah Mantels, Tyler Pratt, Valerie Szybala, and Marie Claire Vasquez

2010 M.A. Graduates
The Ford Dorsey International Policy Studies Program
Stanford University

July 2010

Adapted from a March 2010 report prepared for the Empirical Studies of Conflict Group
Table of Contents

I. INTRODUCTION .. 2
II. BACKGROUND .. 3
III. METHODOLOGY ... 3
IV. ANALYSIS .. 7
V. DISCUSSION ... 10
VI. CONCLUSION AND OPPORTUNITIES FOR FUTURE RESEARCH 13

Figure 1: Rising Attack Levels in Afghanistan 2006-2009 ... 3
Figure 2: 28 Districts that Experienced a Drastic Increase in Anti-Civilian Attacks 6
Figure 3: WITS Attacks vs. ISAF Airstrikes in Kandahar Province, 2009 .. 11
Figure 4: Total WITS Attacks vs. Total Taliban Claims, August 2009 ... 12
Figure 5: Opium Cultivation in Districts in Zabul Province, 2006-2009 ... 12

Table 1: Evaluation of Insurgent Incident Databases ... 3
Table 2: Logistic Regression Results .. 6
Table 3: High Change Districts vs. No Change Districts .. 8
Table 4: Change in Overall Attacks vs. Change in Anti-Civilian Attacks .. 9
Table 5: Attacks on Civilians in Zhari, 2006-2009 .. 10
Table 6: Opportunities for Further Research .. 14

Appendix A: ANSF Provincial/District Threat Assessment Map .. 15
I. Introduction

After years of rising insurgent attacks in Afghanistan, in December 2009 U.S. President Barack Obama announced an expanded counterinsurgency (COIN) strategy. This strategy required the commitment of additional troops from the U.S. and the North Atlantic Treaty Organization (NATO), as well as an influx of international resources aimed at improving Afghan government capacity. Equally important, the strategy redirected priorities from combating insurgents to protecting civilian populations, with the aim of increasing Afghan public support for both the U.S.-led International Security Assistance Force (ISAF) coalition and the Afghan government.

The war’s new population-centric approach is a key tenet of classic COIN doctrine. It relies not only on kinetic military tactics applied against insurgents, but also on security for civilian population centers, economic development aid, governance and institution building, and effective strategic communications to persuade locals to support the host nation over insurgents. Unfortunately for leaders implementing this expanded mission in Afghanistan, little empirical research exists to guide their strategic and tactical decisions.

Existing open-source COIN analysis on Afghanistan is often based on incomplete data representing trends at the provincial, regional or even national level (the country is divided into 34 provinces, which are further subdivided into 398 districts). As a result, recommendations stemming from these analyses rely on data too aggregated to be useful to leaders who require a more detailed understanding of the conflict. District-level analysis provides a level of detail granular enough to be relevant to COIN operations. However, few researchers routinely compile district-level data on economic, governance, and security variables. Moreover, many reports are simply a collection of available data thought to be broadly relevant in Afghanistan; researchers offer minimal interpretation of the data and provide little discussion of which variables are appropriate for accurately assessing the COIN mission.

This project, produced by a six-member graduate team from Stanford University, seeks to help fill the empirical void that currently exists in Afghanistan COIN analysis. It explores the following question: What are the most important factors driving changes in insurgent violence against Afghan civilians?

Data for this analysis comes from the Worldwide Incidence Tracking System (WITS) as well as an open-source database of district-level COIN-relevant information that the research team compiled from more than 15 sources.¹ Employing both quantitative and qualitative methods for studying the research question, the analysis concludes increases in anti-civilian violence were most clearly tied to the initiation of International Security Assistance Force (ISAF) security initiatives. The analysis further suggests that the quality of Afghan governance and rule of law are likely important factors influencing local support for insurgents.

¹ The team also compiled a significant amount of data on Afghanistan at the province level. Both the district- and provincial-level datasets are available upon request.
II. Background

Despite early successes in the U.S. and NATO campaigns in Afghanistan, insurgents have dramatically increased their strength in recent years. According to data compiled in WITS, as of mid-2009, overall attack levels were rising, with civilian attacks rising coincident with this increase (Figure 1). Attacks on civilians constitute a substantial proportion of overall attacks; approximately 45 percent of all attacks target civilians.\(^2\) Military commanders have noted the increase in overall attacks was due not only to insurgents’ increased strength, but also to the arrival of additional U.S. troops and increased offensive operations.

Figure 1: Rising Attack Levels in Afghanistan 2006-2009

Source: Worldwide Incidents Tracking System (WITS)

Various factors have influenced the insurgency’s ability to conduct increased attacks: safe-havens in Afghanistan-Pakistan borderlands; sustained revenue through the opium trade; its use of violence and intimidation against locals; its administration of swift justice through parallel governance structures; and its propaganda, which emphasizes ISAF missteps and the Afghan government’s corruption, incompetence, and lack of Pashtun representation.

III. Methodology

Academic literature suggests that at least five structural variables are key to analyzing insurgency trends. These include a country’s population, terrain, road accessibility, border and access to safe-havens, and the initial level of violence. Research has also emphasized the importance of host nation administrative and military capacity, ethnic

\(^2\) Team’s calculation based on WITS; 2009 estimate derived from partial year data, ending mid-September 2009.
divides, per-capita income, and income inequality. Interestingly, COIN literature indicates one metric with intuitive appeal, the aggregate level of violence perpetrated by insurgents, is an incomplete indicator of insurgent strength or influence; it suggests COIN analysts should examine violence data in relation to other variables, not as a sole indicator of important trends.

Based on the above guidance gleaned from prior academic works, the team compiled available information that best represented relevant variables. It focused efforts on obtaining district-level data, which proved difficult given that most organizations collect and disseminate Afghanistan-related information only at the province-level and above. The most useful district-level COIN-relevant data that was compiled included information on: demographics, economic development, opium cultivation, infrastructure, geographic terrain, and security.

To measure insurgent violence in Afghanistan, the team chose to use WITS. WITS offers detailed disaggregated information over time and divides civilian attacks into several categories, including victim type, target, and number of casualties. The fact that these categories are broken down in such detail and the data is provided in a time-series at the city- and village-levels make the WITS database an important analytic resource.

Notably, WITS was chosen as the best incidents database only after it was compared with several other existing attack databases. Table 1 below provides a description of both WITS and the other attack databases considered. While WITS offered the most comprehensive available compilation of attack data in Afghanistan, the team did observe occasional inconsistencies in the data. For example, its coverage of anti-military attacks is limited and data in at least one key district (Kandahar district) was incomplete for 2006 and 2007; it counted zero attacks when there where clearly more.

Using the compiled data, the team focused its investigation on better understanding patterns of insurgent violence against civilians. To reiterate, the central question the project focused on was: What are the most important factors driving changes in insurgent violence against Afghan civilians?

4 Kalyvas and Kocher (2009) specify that “a decline in armed clashes or insurgent violence is consistent both with insurgent success (since violence is much less likely in places under full insurgent control) and insurgent failure.”

5 See, for example, an account of a suicide attack in Kandahar city on 22 August 2006 available at http://www.ctv.ca/servlet/ArticleNews/story/CTVNews/20060813/afghanistan_blasts_060821/20060822?hub=TopStories
Table 7: Evaluation of Insurgent Incident Databases

<table>
<thead>
<tr>
<th>Database</th>
<th>Proprietor</th>
<th>Years</th>
<th># of Events</th>
<th>Variables</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>START (Study of Terrorism and Responses to Terrorism)</td>
<td>University of Maryland & DHS</td>
<td>1970 – 2007</td>
<td>1134 events, 998 after 2001</td>
<td>Date, location, perpetrator, casualties/fatalities, nature of target, weapons</td>
<td>Mostly city</td>
</tr>
<tr>
<td>WITS (Worldwide Incidents Tracking System)</td>
<td>U.S. National Counter-terrorism Center</td>
<td>2004 – present</td>
<td>5,947</td>
<td>Date, location, damage, perpetrator, victim, dead, wounded, hostage, weapon, event type, targeting, facility</td>
<td>Mostly city</td>
</tr>
<tr>
<td>ITERATE (International Terrorism: Attributes of Terrorist Events)</td>
<td>Inter-University Consortium for Political</td>
<td>1968 – 1977</td>
<td>3,329 total (Afghan unspecified)</td>
<td>Event type, incident location (beginning and end), perpetrator, casualties, fatalities; consequences of</td>
<td>Incident (city if applicable)</td>
</tr>
<tr>
<td>SID (Societal Infrastructures and Development Project)</td>
<td>University of Illinois, Urbana-Champlain</td>
<td>1947 – present</td>
<td>10,000 total (Afghan unspecified)</td>
<td>Date, location, participants (initiators, targets, victims), foreign involvement, weapons, type of event, context</td>
<td>Mostly city (computer-aided geo-coding)</td>
</tr>
</tbody>
</table>

To begin examining this question, the team first determined which districts experienced the greatest increase in insurgent violence against civilians from 2006-2009, calculated by aggregating anti-civilian attacks at the annual level for each district. The team then selected districts with the greatest increase in anti-civilian attacks. Twenty-eight districts experienced significantly increased levels of violence between 2006 and 2009 (see Figure 2), while the remaining districts were classified as having no significant increase in insurgent attacks.

Having identified these two broad categories, the team investigated the factors differentiating the districts with and without an increase in violence. The first step was to perform a logistic regression to identify determinants of increases in anti-civilian violence. Of the five structural variables identified in the COIN literature as key factors explaining insurgent strength (population, median elevation, road access, border with Pakistan, and initial level of violence), three proved to be significant predictors of increasing violence in Afghanistan: the level of initial attacks against civilians, total population, and the percentage of roads accessible to cars year-round. The regression results are presented in Table 2.

6 Defined as the districts experiencing increases in number of attacks more than one standard deviation from the mean change in attacks for all districts. The mean change in attack levels across all districts was 3.14, with a standard deviation of 14.24.
Figure 2: 28 Districts that Experienced a Drastic Increase in Anti-Civilian Attacks

Table 8: Logistic Regression Results

<table>
<thead>
<tr>
<th>Logistic Regression</th>
<th>Odds Ratio</th>
<th>Std. Error</th>
<th>Z-score7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civilian Attacks 2006</td>
<td>1.75</td>
<td>.175</td>
<td>5.64**</td>
</tr>
<tr>
<td>Total population</td>
<td>1.01</td>
<td>.005</td>
<td>2.18**</td>
</tr>
<tr>
<td>Median elevation</td>
<td>1.00</td>
<td>.000</td>
<td>0.17</td>
</tr>
<tr>
<td>% Roads accessible all season</td>
<td>1.02</td>
<td>.010</td>
<td>2.32**</td>
</tr>
<tr>
<td>Pakistan border</td>
<td>0.63</td>
<td>.517</td>
<td>-0.56</td>
</tr>
</tbody>
</table>

7 Z-score: indicates how many standard deviations an observation lies above or below the mean.

Source: Stanford IPS Compiled Dataset, WITS

The Z-score measures the standard deviation of the variable within the sampling distribution.
The regression results indicate that for every additional civilian attack in 2006, the district where the attack took place was 75 percent more likely to experience a significant increase in violence. For every additional thousand people living in a district, there was a 1 percent increase in the likelihood of a drastic increase in violence. For every 1 percent increase in road accessibility, a district was 2 percent more likely to experience a significant increase in violence.

Using the results of the regression, a “propensity” score was assigned to each district in Afghanistan. The propensity score measures the likelihood, given a district’s structural characteristics, that it will experience a drastic increase in violence from 2006 through 2009. The team then applied an algorithm to these scores to match each of the 28 districts that experienced a drastic increase in violence with a district that did not experience the increase but had the closest propensity score. The algorithm thus produced 28 matched pairs of Afghan districts. This allowed the construction of an alternative scenario: of any two matched districts with equal likelihood to experience an increase in violence, only one did. Matching districts in this manner – having already controlled for structural variables inferred to affect violence levels – allowed for an exploration of whether security, development, and governance trends determined differing violence patterns in otherwise similar Afghan districts.

IV. Analysis

A. Quantitative Analysis

As noted in Table 3, the team compared the matched districts using twelve variables from the team’s database. The results revealed only three statistically significant differences between the groups when comparing these variables: the number of Community Development Councils (CDCs) in 2007, an Afghan National Security Forces (ANSF) per-district security rating, and the number of attacks on police.

First, the results show that the number of CDCs in 2007 was higher in those districts that experienced a drastic increase in anti-civilian violence by 2009. This finding is counterintuitive, because it suggests that districts with higher development efforts became more violent over time. However, the correlation between CDCs and anti-civilian violence disappeared by 2009. This change may reflect growing insecurity in these districts. The 2007 results may also indicate that there were more CDCs established in potentially troublesome areas in the initial years of the invasion. Then again, given the limitations of the National Solidarity Program (NSP) data collection efforts, it is possible that the statistical finding reflects measurement error rather than statistical significance. Nevertheless, it is useful to understand that not all development efforts necessarily lead to improved security. More research and more data at the district level could provide a clearer picture of the relationship between CDCs and violence.
Second, districts with a drastic increase in the number of attacks on civilians were those that ANSF assessed as least secure in April 2009, when an ANSF security assessment map was compiled (see Appendix A). This finding lends itself to two distinct interpretations. First, increasing Taliban presence leads directly to increased insurgent attacks against civilians, as the Taliban attack civilians in order to consolidate control over districts. The second and perhaps more feasible interpretation is that districts with higher Taliban presence in April 2009 were more likely to be the focus of ISAF military operations designed to recapture the districts, and as such, violence against civilians rose as part of an increase in total violence levels.

The third result supports the interpretation that anti-civilian attacks are the by-product of contestation between insurgent and counterinsurgent forces. Districts with drastic increases in anti-civilian violence also had more attacks against police in any given year. As insurgents and counterinsurgents battle for control, overall levels of violence rise, and the civilian security situation deteriorates.

Supporting the last result, the team’s calculations show that the average change in overall attacks throughout Afghanistan from 2006 to 2009 was not significantly different from the average change in anti-civilian attacks during the same time period (see Table 4). This suggests the rise in violence against civilians is not necessarily the result of a deliberate insurgent targeting strategy; instead, it is more likely that civilians were increasingly collaterally impacted by the rise in overall violence between 2006 and 2009.

Table 9: High Change Districts vs. No Change Districts

<table>
<thead>
<tr>
<th>Variable</th>
<th>Average of increased districts</th>
<th>Average of non-increased, matched districts</th>
<th>t-statistic 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSF security rating</td>
<td>2.57</td>
<td>1.92</td>
<td>2.75**</td>
</tr>
<tr>
<td>Number of CDCs 2007</td>
<td>95.37</td>
<td>68.88</td>
<td>2.62**</td>
</tr>
<tr>
<td>Number of CDCs 2009</td>
<td>89.00</td>
<td>67.05</td>
<td>1.61</td>
</tr>
<tr>
<td>NSP subprojects complete 2009</td>
<td>134.91</td>
<td>119.60</td>
<td>0.95</td>
</tr>
<tr>
<td>Distance from nearest city (miles)</td>
<td>34.80</td>
<td>34.44</td>
<td>0.04</td>
</tr>
<tr>
<td>Opium Cultivation 2005</td>
<td>822.32</td>
<td>628.60</td>
<td>0.54</td>
</tr>
<tr>
<td>Opium Cultivation 2006</td>
<td>1492.63</td>
<td>496.11</td>
<td>1.60</td>
</tr>
<tr>
<td>Opium Cultivation 2007</td>
<td>2709.57</td>
<td>621.30</td>
<td>1.88</td>
</tr>
<tr>
<td>Opium Cultivation 2008</td>
<td>2274.89</td>
<td>385.54</td>
<td>2.00</td>
</tr>
<tr>
<td>Opium Cultivation 2009</td>
<td>1771.96</td>
<td>552.92</td>
<td>1.54</td>
</tr>
<tr>
<td>Attacks on police/gov 2006</td>
<td>4.29</td>
<td>1.08</td>
<td>2.93**</td>
</tr>
<tr>
<td>Attacks on police/gov 2009</td>
<td>9.53</td>
<td>2.06</td>
<td>4.79**</td>
</tr>
</tbody>
</table>

8 T-statistic: measures the ability to reject the null hypothesis that the means of the two groups are equal.

Source: Stanford IPS Compiled Dataset, WITS
Indeed, a review of specific attacks in these districts reveals that over 40 percent of attacks come from improvised explosive devices (IEDs), mostly roadside IEDs, which often detonate indiscriminately against both military and civilian vehicles.9

Table 10: Change in Overall Attacks vs. Change in Anti-Civilian Attacks

<table>
<thead>
<tr>
<th>T-test</th>
<th>Change in Overall Attacks, 2006-2009</th>
<th>Change in Civilian Attacks, 2006-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.54</td>
<td>1.32</td>
</tr>
<tr>
<td>Variance</td>
<td>203.46</td>
<td>15.33</td>
</tr>
<tr>
<td>t-stat</td>
<td>-1.64 (critical value: 1.97)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Worldwide Incident Tracking System (WITS)

B. Qualitative Analysis

Following the quantitative analysis, the team conducted qualitative research to better understand why anti-civilian violence increased in some districts but not others. It focused on trends in ISAF and Taliban strategies, development assistance, and local governance/rule of law in two of the 28 matched pairs, specifically: (1) Garmser, a high-change district, and Zhari, its no-change pair; and (2) Shinkay, a high-change district and Naw Bahar, its no-change pair.10

An examination of publicly available information on these two district pairings suggests the divergent anti-civilian violence trends are best explained by the existence of Taliban and ISAF security initiatives. In the districts where anti-civilian violence increased, the rise was most clearly tied to expanding ISAF security initiatives aimed at clearing the district of insurgent forces or asserting ISAF/Afghan government control. Interestingly, in these districts, low levels of anti-civilian violence were most frequently found at times of uncontested Taliban influence, a more concerning security trend.

In addition to general security explanations for changes in anti-civilian violence levels, the team’s district-level research provides support for the claim that Afghan government and rule of law weaknesses are an important factor influencing local support for insurgents and thus anti-civilian violence levels. In at least some districts, the Taliban is reportedly able to exploit Afghan government failures by building parallel systems of governance that offer locals more effective alternatives to the central government. As the Taliban presence was able to become more mature, anti-civilian violence levels lowered - as long as Taliban influence remained uncontested. Trends surrounding anti-civilian attacks in Zhari from 2006 to 2009 support this conclusion (see Table 5).

9 Calculation using the team’s compiled database, with assistance from Palantir Technologies.
10 For a more in-depth discussion of the qualitative research into these two district pairings, please see the longer version of this report, available upon request.
Table 11: Attacks on Civilians in Zhari, 2006-2009

<table>
<thead>
<tr>
<th>Province</th>
<th>District</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009*</th>
<th>∆06-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandahar</td>
<td>Zhari</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>10.5</td>
<td>+1.5</td>
</tr>
</tbody>
</table>

Source: Worldwide Incident Tracking System (WITS)

The relatively high numbers of anti-civilian attacks in Zhari in 2006 and 2007 coincided with a Taliban campaign to consolidate its control over district inhabitants. During this timeframe, the Taliban was singling out locals whom it deemed ISAF collaborators. It also used intimidation techniques, such as public beheadings, to increase its influence.11 By 2008, the Taliban had developed effective alternate governance institutions, creating a relatively transparent and effective judicial system, regularized taxation, and a complaints committee. It also offered local citizens protection against their landlords and the highly unpopular ISAF opium eradication efforts while effectively blocking ISAF and Afghan government efforts to win popular support through development projects.1213 In 2009, as ISAF increased operations in the district to contest Taliban control, attacks rose.

While no reliable district-level measures of rule of law or Taliban governance were available to empirically test the above observation directly, the team analyzed violence in districts assessed by ANSF as “Taliban-controlled” (see Appendix A) with the assumption that insurgent control implied a mature Taliban presence with some administrative capacity. It found that in five of the provinces with “Taliban-controlled” districts, the province-wide average number of attacks was significantly higher than the average found in Taliban-controlled districts.

Development assistance seemed to have less explanatory power than either security or governance/rule of law issues. However, research in this realm was hindered by the limited availability of reliable information.

V. Discussion

A number of lessons for COIN analysis stem from the research in this report. One of the most important is to avoid using attack levels as the primary measure of insurgent influence. In Afghanistan-related analyses, areas with high attack levels are often viewed as areas of significant insurgent presence. However, as noted in the previous section, in many districts, lower attack levels signified a more - not less - robust Taliban presence.

Additionally, examining counterinsurgent activity, development activity, and governance activity is at least as important as examining insurgent activity when trying to determine COIN effects. Unfortunately, the tendency of analysts to consider only insurgent activity is institutionalized within the intelligence community. “Red force” data (information on the enemy) is considered analyzable, while “blue force” data (information on

12 Forsberg 33 and 35.

13 Forsberg 35.
U.S./coalition activities) is considered strictly off-limits. This analytic process tends to miss key trends that a more layered approach would likely reveal about the strengths and weaknesses of insurgent forces.

For example, as Figure 3 illustrates, a review of only Taliban attack levels could lead to a conclusion that the insurgent presence in Kandahar province is heavily concentrated in Kandahar city. However, a different picture emerges when data about the frequency and location of ISAF airstrikes are included. Areas with low WITS attack levels but a high number of airstrike events correlate with districts reported to have a mature Taliban presence, like Ghorak, Arghandab, and Panjwayi. These are likely districts from which insurgents launch attacks into Kandahar city.

Figure 3: WITS Attacks vs. ISAF Airstrikes in Kandahar Province, 2009

![Bar Chart]

Source: WITS and Defense Airpower Summaries

Team research also indicates the Taliban’s strategy for asserting control over the local populations is focused as much on its propaganda campaign, parallel governance structures, and intimidation techniques, as on violence. As such, researchers and analysts must develop better, more consistent information to effectively assess Taliban efforts to obtain local support. In particular, Taliban propaganda provides important information about the group’s relationship with locals, but it is unfortunately under-studied.

Better understanding of the Taliban’s messaging campaign could provide critical insight into Taliban strategies to co-opt a given populace. For example, Figure 4 displays inconsistencies between Taliban attack claims and WITS records. These inconsistencies include Taliban claims for attacks that never occurred and avoidance of responsibility for attacks it clearly conducted. Understanding these discrepancies may shed light on the Taliban’s strategy for influencing local populations. In addition, by calling attention to

14 Note that Zhari is not noted as a location frequently attacked by ISAF airstrikes, despite being a location of significant Taliban presence; this is likely an aberration in the data. The qualitative research revealed airstrikes as having occurred in Zhari in 2009. It is not clear why these strikes were not recorded.
these inconsistencies, the coalition may be able to discredit the Taliban among the very population insurgents are trying to manipulate.15

Figure 4: Total WITS Attacks vs. Total Taliban Claims, August 2009

![Figure 4: Total WITS Attacks vs. Total Taliban Claims, August 2009](image)

Source: WITS and Open Source Center Tracking of Taliban Attack Claims

Work on this project also highlighted the dangers of basing analysis on weak or overly-aggregated data. As mentioned previously, most available COIN-relevant data for Afghanistan is reported at the province- or national-level, but analysis based on this data can mask important trends. As an example, Figure 5 displays trends in opium production among the districts in Zabul province from 2006-2009. The dashed line shows that changes in province-level opium production increased from 2007 to 2008 and decreased in the other years shown. This pattern was not consistently matched at the individual district-level, however, and therefore does not reflect local opium cultivation trends.

Figure 5: Opium Cultivation in Districts in Zabul Province, 2006-2009

![Figure 5: Opium Cultivation in Districts in Zabul Province, 2006-2009](image)

15 In addition to deliberate attempts to mislead the population, other explanations for the inconsistencies could be any of the following: WITS did not capture the attack in its database, even though the attack occurred; the Taliban did not claim an attack that either the HIG or Haqqani network claimed.
One important category of information that was noticeably absent from this analysis was data on local attitudes. Unfortunately, most public opinion polling in Afghanistan is aggregated to at least the province-level and has methodological issues stemming from the difficulty of conducting polling in conflict-ridden environments. Regardless, given the fight to gain local support is the key to COIN efforts in Afghanistan, researchers and analysts must find ways to better understand what drives local attitudes toward, and cooperation with, insurgents, the government, and ISAF.

An indirect but potentially reliable means of obtaining district-level survey data is to poll counterinsurgents (ISAF and ANSF elements) for their opinions on how to win local support. Beyond opinion polls, metrics such as the number of intelligence tip-offs provided by locals on enemy safe-house locations, sites of weapons caches, or upcoming attacks would provide significant insight into a given population’s willingness to cooperate with ISAF and the host nation government. Such metrics exist, but remain classified. If scrubbed of sensitive information and declassified for researchers across a spectrum of institutions, these metrics would likely prove highly useful in developing insights related to drivers behind public cooperation.

These suggested improvements in data collection methods will have little impact unless everyone involved in data collection and analysis, from the U.S. Military and NGOs to academic researchers, make greater efforts to share data. Initiatives such as the Minerva Consortium, which seeks to build bridges between the military and academia, are a step in the right direction, but they are not enough. The initial steps towards increased data sharing and accessibility must come from within the U.S. Government and armed forces, both by making available to the public more of the information it collects, and by establishing norms of information sharing for others.

The U.S. casts a wide net of influence through its relationships with all levels of the Afghan government, coalition partners, and non-governmental actors, not to mention its wide geographical reach on the ground. The U.S. can influence other agencies, particularly government-funded agencies such as USAID, to broadly share the information they collect. The U.S. military, in particular, can set a positive example by making a greater effort to identify, extract and sanitize data that can be declassified and released even before Freedom of Information Act (FOIA) petitions are filed. This will help scholars working outside official channels access quality information and data needed to provide the analytical support crucial for COIN analysis.

VI. Conclusion and Opportunities for Future Research

This research project aimed to provide decision-makers with empirical research on Afghanistan COIN efforts, and to offer fellow researchers new ideas for the collection, dissemination and analysis of data.

In pursuit of these goals, the team identified the variables most likely to impact insurgent violence, compiled relevant data, and empirically analyzed this data using both regression analysis and propensity score matching. The results of this analysis suggest that, among other things, the areas of greatest ISAF-insurgent contestation have the highest number of civilian casualties. Perhaps counter-intuitively, this suggests that, at least in the short-
term, Afghan civilians’ lives are safer in districts under complete Taliban control than in those where the coalition is actively confronting insurgents.

In the course of this analysis a number of further lessons were learned regarding the analysis and collection of COIN-related data in Afghanistan. Central among these is the need for disaggregated analysis of insurgent activities and COIN efforts. The improvements in data collection and analysis suggested in this report are intended to be more than academic rhetoric; they are aimed at informing critical policy decisions with very real consequences. Higher quality data and better analysis will lead to more accurate recommendations for improving the effectiveness of COIN efforts.

Finally, in examining its civilian attacks-specific question, the team identified several other useful points of inquiry related to COIN strategy in Afghanistan. However, its access to the data needed to research these points was constrained, often by classification and access issues. A brief list of potentially instructive questions appears below, offered to encourage the release of specific information and to promote additional scholarship, thus increasing the usefulness of COIN-related research.

Table 12: Opportunities for Further Research

<table>
<thead>
<tr>
<th>Research Question</th>
<th>Importance to Policy</th>
<th>District-Level Data Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the finding that increased security operations correspond with higher levels of anti-civilian insurgent attacks robust?</td>
<td>Shaping ISAF operations in contested areas; gaining public support for ISAF presence</td>
<td>Size of ISAF presence, dates of ISAF operational initiatives</td>
</tr>
<tr>
<td>What factors lead to changes in public cooperation with ISAF and/or the Afghan Government?</td>
<td>Consolidation of Afghan government control over key areas; turning Afghan civilian support against Taliban</td>
<td>Credible measures of public cooperation (intelligence tip-offs, participation rate in government programs)</td>
</tr>
<tr>
<td>What factors lead to a significant increase in attacks against Afghan National Police?</td>
<td>Police recruitment; Afghan civilian support for government security forces</td>
<td>Afghan National Police force size, structure, location, and readiness.</td>
</tr>
<tr>
<td>What is the relationship between Afghan government corruption and Taliban parallel governance?</td>
<td>Establishing enduring government institutions; undermining Taliban influence</td>
<td>Measures of Afghan government corruption, capabilities; measures of Afghan rule of law competency</td>
</tr>
</tbody>
</table>
Appendix A: ANSF Provincial/District Threat Assessment Map

ANSF Provincial/District Threat Assessment 23 April 2009

Source: Reportedly Afghan National Security Forces
